Mastering Predictive Analytics with R

Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts About This Book Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper ...

Mastering Predictive Analytics with R

Author: James D. Miller

Publisher: Packt Publishing Ltd

ISBN: 1787124355

Page: 448

View: 815

Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts About This Book Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easily Who This Book Is For Although budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure. What You Will Learn Master the steps involved in the predictive modeling process Grow your expertise in using R and its diverse range of packages Learn how to classify predictive models and distinguish which models are suitable for a particular problem Understand steps for tidying data and improving the performing metrics Recognize the assumptions, strengths, and weaknesses of a predictive model Understand how and why each predictive model works in R Select appropriate metrics to assess the performance of different types of predictive model Explore word embedding and recurrent neural networks in R Train models in R that can work on very large datasets In Detail R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R. Style and approach This book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.

Mastering Predictive Analytics with R Second Edition

Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential conceptsAbout This Book* Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper ...

Mastering Predictive Analytics with R   Second Edition

Author: James D. Miller

Publisher:

ISBN: 9781787121393

Page: 448

View: 431

Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential conceptsAbout This Book* Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding* Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types* Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easilyWho This Book Is ForAlthough budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure.What You Will Learn* Master the steps involved in the predictive modeling process* Grow your expertise in using R and its diverse range of packages* Learn how to classify predictive models and distinguish which models are suitable for a particular problem* Understand steps for tidying data and improving the performing metrics* Recognize the assumptions, strengths, and weaknesses of a predictive model* Understand how and why each predictive model works in R* Select appropriate metrics to assess the performance of different types of predictive model* Explore word embedding and recurrent neural networks in R* Train models in R that can work on very large datasetsIn DetailR offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems.The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks.By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R.Style and approachThis book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.

Mastering Predictive Analytics with R

Mastering Predictive Analytics with R Master the craft of predictive modeling by
developing strategy, intuition, and a solid foundation in essential concepts Rui
Miguel Forte BIRMINGHAM - MUMBAI Mastering Predictive Analytics with R ...

Mastering Predictive Analytics with R

Author: Rui Miguel Forte

Publisher: Packt Publishing Ltd

ISBN: 1783982810

Page: 414

View: 808

R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. This book is designed to be both a guide and a reference for moving beyond the basics of predictive modeling. The book begins with a dedicated chapter on the language of models and the predictive modeling process. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real world data sets. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real world data sets and mastered a diverse range of techniques in predictive analytics.

R Predictive Analysis

Master the art of predictive modeling About This Book Load, wrangle, and analyze your data using the world's most powerful statistical programming language Familiarize yourself with the most common data mining tools of R, such as k-means, ...

R  Predictive Analysis

Author: Tony Fischetti

Publisher: Packt Publishing Ltd

ISBN: 1788290852

Page: 1065

View: 696

Master the art of predictive modeling About This Book Load, wrangle, and analyze your data using the world's most powerful statistical programming language Familiarize yourself with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, Naive Bayes, decision trees, text mining and so on. We emphasize important concepts, such as the bias-variance trade-off and over-fitting, which are pervasive in predictive modeling Who This Book Is For If you work with data and want to become an expert in predictive analysis and modeling, then this Learning Path will serve you well. It is intended for budding and seasoned practitioners of predictive modeling alike. You should have basic knowledge of the use of R, although it's not necessary to put this Learning Path to great use. What You Will Learn Get to know the basics of R's syntax and major data structures Write functions, load data, and install packages Use different data sources in R and know how to interface with databases, and request and load JSON and XML Identify the challenges and apply your knowledge about data analysis in R to imperfect real-world data Predict the future with reasonably simple algorithms Understand key data visualization and predictive analytic skills using R Understand the language of models and the predictive modeling process In Detail Predictive analytics is a field that uses data to build models that predict a future outcome of interest. It can be applied to a range of business strategies and has been a key player in search advertising and recommendation engines. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. This Learning Path will provide you with all the steps you need to master the art of predictive modeling with R. We start with an introduction to data analysis with R, and then gradually you'll get your feet wet with predictive modeling. You will get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. You will be able to solve the difficulties relating to performing data analysis in practice and find solutions to working with “messy data”, large data, communicating results, and facilitating reproducibility. You will then perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. By the end of this Learning Path, you will have explored and tested the most popular modeling techniques in use on real-world data sets and mastered a diverse range of techniques in predictive analytics. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Data Analysis with R, Tony Fischetti Learning Predictive Analytics with R, Eric Mayor Mastering Predictive Analytics with R, Rui Miguel Forte Style and approach Learn data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach. This is a practical course, which analyzes compelling data about life, health, and death with the help of tutorials. It offers you a useful way of interpreting the data that's specific to this course, but that can also be applied to any other data. This course is designed to be both a guide and a reference for moving beyond the basics of predictive modeling.

Mastering Splunk 8

This book will cover Splunk's offerings to efficiently capture, index, and correlate data from a searchable repository all in real-time to generate insightful graphs, reports, dashboards, and alerts.

Mastering Splunk 8

Author: James Miller

Publisher: Packt Publishing Ltd

ISBN: 1838988238

Page: 456

View: 420

This book will cover Splunk's offerings to efficiently capture, index, and correlate data from a searchable repository all in real-time to generate insightful graphs, reports, dashboards, and alerts. Developers and architects alike can be in high demand if they become experts with this tool.

Implementing Splunk 7 Third Edition

This book will help you implement Splunk 7's new services and will show you how to utilize them to quickly and efficiently process machine-generated big data.

Implementing Splunk 7  Third Edition

Author: James D. Miller

Publisher: Packt Publishing Ltd

ISBN: 1788830504

Page: 576

View: 239

A comprehensive guide to making machine data accessible across the organization using advanced dashboards Key Features Enrich machine-generated data and transform it into useful, meaningful insights Perform search operations and configurations, build dashboards, and manage logs Extend Splunk services with scripts and advanced configurations to process optimal results Book Description Splunk is the leading platform that fosters an efficient methodology and delivers ways to search, monitor, and analyze growing amounts of big data. This book will allow you to implement new services and utilize them to quickly and efficiently process machine-generated big data. We introduce you to all the new features, improvements, and offerings of Splunk 7. We cover the new modules of Splunk: Splunk Cloud and the Machine Learning Toolkit to ease data usage. Furthermore, you will learn to use search terms effectively with Boolean and grouping operators. You will learn not only how to modify your search to make your searches fast but also how to use wildcards efficiently. Later you will learn how to use stats to aggregate values, a chart to turn data, and a time chart to show values over time; you'll also work with fields and chart enhancements and learn how to create a data model with faster data model acceleration. Once this is done, you will learn about XML Dashboards, working with apps, building advanced dashboards, configuring and extending Splunk, advanced deployments, and more. Finally, we teach you how to use the Machine Learning Toolkit and best practices and tips to help you implement Splunk services effectively and efficiently. By the end of this book, you will have learned about the Splunk software as a whole and implemented Splunk services in your tasks at projects What you will learn Focus on the new features of the latest version of Splunk Enterprise 7 Master the new offerings in Splunk: Splunk Cloud and the Machine Learning Toolkit Create efficient and effective searches within the organization Master the use of Splunk tables, charts, and graph enhancements Use Splunk data models and pivots with faster data model acceleration Master all aspects of Splunk XML dashboards with hands-on applications Create and deploy advanced Splunk dashboards to share valuable business insights with peers Who this book is for This book is intended for data analysts, business analysts, and IT administrators who want to make the best use of big data, operational intelligence, log management, and monitoring within their organization. Some knowledge of Splunk services will help you get the most out of the book

Predictive HR Analytics

This second edition has been updated to include the latest material on machine learning, biased algorithms, data protection and GDPR considerations, a new example using survival analyses, and up-to-the-minute screenshots and examples with ...

Predictive HR Analytics

Author: Dr Martin R. Edwards

Publisher: Kogan Page Publishers

ISBN: 0749484454

Page: 536

View: 461

HR metrics and organizational people-related data are an invaluable source of information from which to identify key trends and patterns in order to make effective business decisions. HR practitioners often, however, lack the statistical and analytical know-how to fully harness their potential. Predictive HR Analytics provides a clear, accessible framework with which to understand and work with people analytics and advanced statistical techniques. Step-by-step and by using worked examples, this book shows readers how to carry out and interpret analyses of various forms of HR data, such as employee engagement, performance and turnover, using the statistical packages SPSS (with R syntax provided), and, importantly, how to use the results to enable practitioners to develop effective evidence-based HR strategies. This second edition of Predictive HR Analytics has been updated to include new material on machine learning, biased algorithms, data protection and GDPR considerations, a new example using Kaplan Meier Survival analyses for tenure/turnover modelling and updated screenshots and examples with SPSS version 25. It is supported by a new appendix showing main R coding for the focal analyses approaches in the book, and online resources consisting of SPSS and Excel data sets and R syntax with worked case study examples.

Improving Your Splunk Skills

This Learning Path is your comprehensive guide to making machine data accessible across your organization using advanced dashboards.

Improving Your Splunk Skills

Author: James D. Miller

Publisher: Packt Publishing Ltd

ISBN: 1838981020

Page: 680

View: 448

Transform machine-generated data into valuable business insights using the powers of Splunk Key Features Explore the all-new machine learning toolkit in Splunk 7.x Tackle any problems related to searching and analyzing your data with Splunk Get the latest information and business insights on Splunk 7.x Book Description Splunk makes it easy for you to take control of your data and drive your business with the cutting edge of operational intelligence and business analytics. Through this Learning Path, you'll implement new services and utilize them to quickly and efficiently process machine-generated big data. You'll begin with an introduction to the new features, improvements, and offerings of Splunk 7. You'll learn to efficiently use wildcards and modify your search to make it faster. You'll learn how to enhance your applications by using XML dashboards and configuring and extending Splunk. You'll also find step-by-step demonstrations that'll walk you through building an operational intelligence application. As you progress, you'll explore data models and pivots to extend your intelligence capabilities. By the end of this Learning Path, you'll have the skills and confidence to implement various Splunk services in your projects. This Learning Path includes content from the following Packt products: Implementing Splunk 7 - Third Edition by James Miller Splunk Operational Intelligence Cookbook - Third Edition by Paul R Johnson, Josh Diakun, et al What you will learn Master the new offerings in Splunk: Splunk Cloud and the Machine Learning Toolkit Create efficient and effective searches Master the use of Splunk tables, charts, and graph enhancements Use Splunk data models and pivots with faster data model acceleration Master all aspects of Splunk XML dashboards with hands-on applications Apply ML algorithms for forecasting and anomaly detection Integrate advanced JavaScript charts and leverage Splunk's API Who this book is for This Learning Path is for data analysts, business analysts, and IT administrators who want to leverage the Splunk enterprise platform as a valuable operational intelligence tool. Existing Splunk users who want to upgrade and get up and running with Splunk 7.x will also find this book useful. Some knowledge of Splunk services will help you get the most out of this Learning Path.

Modeling Techniques in Predictive Analytics with Python and R

This book will help you leverage that power to solve real business problems, and drive real competitive advantage.

Modeling Techniques in Predictive Analytics with Python and R

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 013389214X

Page: 448

View: 559

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Hands On Machine Learning with IBM Watson

You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions.

Hands On Machine Learning with IBM Watson

Author: James Miller

Publisher: Packt Publishing Ltd

ISBN: 1789616271

Page: 288

View: 154

A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions.

IBM Watson Projects

IBM Watson Projects demonstrate projects focused on cognitive computing & analytical capabilities of IBM Watson.

IBM Watson Projects

Author: James D. Miller

Publisher: Packt Publishing Ltd

ISBN: 178934669X

Page: 340

View: 178

Incorporate intelligence to your data-driven business insights and high accuracy business solutions Key Features Explore IBM Watson capabilities such as Natural Language Processing (NLP) and machine learning Build projects to adopt IBM Watson across retail, banking, and healthcare Learn forecasting, anomaly detection, and pattern recognition with ML techniques Book Description IBM Watson provides fast, intelligent insight in ways that the human brain simply can't match. Through eight varied projects, this book will help you explore the computing and analytical capabilities of IBM Watson. The book begins by refreshing your knowledge of IBM Watson's basic data preparation capabilities, such as adding and exploring data to prepare it for being applied to models. The projects covered in this book can be developed for different industries, including banking, healthcare, media, and security. These projects will enable you to develop an AI mindset and guide you in developing smart data-driven projects, including automating supply chains, analyzing sentiment in social media datasets, and developing personalized recommendations. By the end of this book, you'll have learned how to develop solutions for process automation, and you'll be able to make better data-driven decisions to deliver an excellent customer experience. What you will learn Build a smart dialog system with cognitive assistance solutions Design a text categorization model and perform sentiment analysis on social media datasets Develop a pattern recognition application and identify data irregularities smartly Analyze trip logs from a driving services company to determine profit Provide insights into an organization's supply chain data and processes Create personalized recommendations for retail chains and outlets Test forecasting effectiveness for better sales prediction strategies Who this book is for This book is for data scientists, AI engineers, NLP engineers, machine learning engineers, and data analysts who wish to build next-generation analytics applications. Basic familiarity with cognitive computing and sound knowledge of any programming language is all you need to understand the projects covered in this book.

Statistics for Data Science

Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement ...

Statistics for Data Science

Author: James D. Miller

Publisher: Packt Publishing Ltd

ISBN: 178829534X

Page: 286

View: 161

Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically. Style and approach Step by step comprehensive guide with real world examples

Predictive HR Analytics

Confidently use predictive analytic and statistical techniques to identify key relationships and trends in HR-related data to aid strategic organizational decision-making.

Predictive HR Analytics

Author: Martin Edwards

Publisher: Kogan Page

ISBN: 9780749484446

Page: 536

View: 982

Confidently use predictive analytic and statistical techniques to identify key relationships and trends in HR-related data to aid strategic organizational decision-making.

Modeling Techniques in Predictive Analytics

Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math.

Modeling Techniques in Predictive Analytics

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 0133886190

Page: 384

View: 356

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Mastering Pandas

This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains.

Mastering Pandas

Author: Ashish Kumar

Publisher:

ISBN: 9781789343236

Page: 674

View: 208

Perform advanced data manipulation tasks using pandas and become an expert data analyst. Key Features Manipulate and analyze your data expertly using the power of pandas Work with missing data and time series data and become a true pandas expert Includes expert tips and techniques on making your data analysis tasks easier Book Description pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains. An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook. By the end of this book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process. What you will learn Speed up your data analysis by importing data into pandas Keep relevant data points by selecting subsets of your data Create a high-quality dataset by cleaning data and fixing missing values Compute actionable analytics with grouping and aggregation in pandas Master time series data analysis in pandas Make powerful reports in pandas using Jupyter notebooks Who this book is for This book is for data scientists, analysts and Python developers who wish to explore advanced data analysis and scientific computing techniques using pandas. Some fundamental understanding of Python programming and familiarity with the basic data analysis concepts is all you need to get started with this book.

Predictive Analytics

All the tools you need are available in Microsoft Excel 2016, and all the knowledge and skills are right here, in this book!

Predictive Analytics

Author: Conrad Carlberg

Publisher:

ISBN:

Page: 384

View: 352

EXCEL 2016 PREDICTIVE ANALYTICS FOR SERIOUS DATA CRUNCHERS! Now, you can apply cutting-edge predictive analytics techniques to help your business win-and you don't need multimillion-dollar software to do it. All the tools you need are available in Microsoft Excel 2016, and all the knowledge and skills are right here, in this book! Microsoft Excel MVP Conrad Carlberg shows you how to use Excel predictive analytics to solve real problems in areas ranging from sales and marketing to operations. Carlberg offers unprecedented insight into building powerful, credible, and reliable forecasts, helping you gain deep insights from Excel that would be difficult to uncover with costly tools such as SAS or SPSS. Fully updated for Excel 2016, this guide contains valuable new coverage of accounting for seasonality and managing complex consumer choice scenarios. Throughout, Carlberg provides downloadable Excel 2016 workbooks you can easily adapt to your own needs, plus VBA code-much of it open- source-to streamline especially complex techniques. Step by step, you'll build on Excel skills you already have, learning advanced techniques that can help you increase revenue, reduce costs, and improve productivity. By mastering predictive analytics, you'll gain a powerful competitive advantage for your company and yourself. Learn the "how" and "why" of using data to make better decisions, and choose the right technique for each problem Capture live real-time data from diverse sources, including third-party websites Use logistic regression to predict behaviors such as "will buy" versus "won't buy" Distinguish random data bounces from real, fundamental changes Forecast time series with smoothing and regression Account for trends and seasonality via Holt- Winters smoothing Prevent trends from running out of control over long time horizons Construct more accurate predictions by using Solver Manage large numbers of variables and unwieldy datasets with principal components analysis and Varimax factor rotation Apply ARIMA (Box-Jenkins) techniques to build better forecasts and clarify their meaning Handle complex consumer choice problems with advanced logistic regression Benchmark Excel results against R results.

Mastering Machine Learning with R

Master machine learning techniques with R to deliver insights in complex projects About This Book Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST Understand the benefits and potential ...

Mastering Machine Learning with R

Author: Cory Lesmeister

Publisher: Packt Publishing Ltd

ISBN: 1787284484

Page: 420

View: 781

Master machine learning techniques with R to deliver insights in complex projects About This Book Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning Implement advanced concepts in machine learning with this example-rich guide Who This Book Is For This book is for data science professionals, data analysts, or anyone with a working knowledge of machine learning, with R who now want to take their skills to the next level and become an expert in the field. What You Will Learn Gain deep insights into the application of machine learning tools in the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Master fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Learn how to use R in a cloud service such as Amazon In Detail This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets. Style and approach The book delivers practical and real-world solutions to problems and a variety of tasks such as complex recommendation systems. By the end of this book, you will have gained expertise in performing R machine learning and will be able to build complex machine learning projects using R and its packages.

Neuronale Netze Selbst Programmieren

- Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Neuronale Netze Selbst Programmieren

Author: Tariq Rashid

Publisher:

ISBN: 9781492064046

Page: 232

View: 579

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Dennoch verstehen nur wenige, wie Neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie Neuronale Netze arbeiten. Dafür brauchen Sie keine tieferen Mathematik-Kenntnisse, denn alle mathematischen Konzepte werden behutsam und mit vielen Illustrationen erläutert. Dann geht es in die Praxis: Sie programmieren Ihr eigenes Neuronales Netz mit Python und bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. Zum Schluss lassen Sie das Netz noch auf einem Raspberry Pi Zero laufen. - Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Python Data Analytics and Visualization

Understand, evaluate, and visualize data About This Book Learn basic steps of data analysis and how to use Python and its packages A step-by-step guide to predictive modeling including tips, tricks, and best practices Effectively visualize ...

Python  Data Analytics and Visualization

Author: Phuong Vo.T.H

Publisher: Packt Publishing Ltd

ISBN: 1788294858

Page: 866

View: 622

Understand, evaluate, and visualize data About This Book Learn basic steps of data analysis and how to use Python and its packages A step-by-step guide to predictive modeling including tips, tricks, and best practices Effectively visualize a broad set of analyzed data and generate effective results Who This Book Is For This book is for Python Developers who are keen to get into data analysis and wish to visualize their analyzed data in a more efficient and insightful manner. What You Will Learn Get acquainted with NumPy and use arrays and array-oriented computing in data analysis Process and analyze data using the time-series capabilities of Pandas Understand the statistical and mathematical concepts behind predictive analytics algorithms Data visualization with Matplotlib Interactive plotting with NumPy, Scipy, and MKL functions Build financial models using Monte-Carlo simulations Create directed graphs and multi-graphs Advanced visualization with D3 In Detail You will start the course with an introduction to the principles of data analysis and supported libraries, along with NumPy basics for statistics and data processing. Next, you will overview the Pandas package and use its powerful features to solve data-processing problems. Moving on, you will get a brief overview of the Matplotlib API .Next, you will learn to manipulate time and data structures, and load and store data in a file or database using Python packages. You will learn how to apply powerful packages in Python to process raw data into pure and helpful data using examples. You will also get a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or building helpful products such as recommendations and predictions using Scikit-learn. After this, you will move on to a data analytics specialization—predictive analytics. Social media and IOT have resulted in an avalanche of data. You will get started with predictive analytics using Python. You will see how to create predictive models from data. You will get balanced information on statistical and mathematical concepts, and implement them in Python using libraries such as Pandas, scikit-learn, and NumPy. You'll learn more about the best predictive modeling algorithms such as Linear Regression, Decision Tree, and Logistic Regression. Finally, you will master best practices in predictive modeling. After this, you will get all the practical guidance you need to help you on the journey to effective data visualization. Starting with a chapter on data frameworks, which explains the transformation of data into information and eventually knowledge, this path subsequently cover the complete visualization process using the most popular Python libraries with working examples This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Getting Started with Python Data Analysis, Phuong Vo.T.H &Martin Czygan Learning Predictive Analytics with Python, Ashish Kumar Mastering Python Data Visualization, Kirthi Raman Style and approach The course acts as a step-by-step guide to get you familiar with data analysis and the libraries supported by Python with the help of real-world examples and datasets. It also helps you gain practical insights into predictive modeling by implementing predictive-analytics algorithms on public datasets with Python. The course offers a wealth of practical guidance to help you on this journey to data visualization