Data Mining and Learning Analytics

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) ...

Data Mining and Learning Analytics

Author: Samira ElAtia

Publisher: John Wiley & Sons

ISBN: 1118998235

Page: 320

View: 959

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Data Mining and Learning Analytics

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) ...

Data Mining and Learning Analytics

Author: Samira ElAtia

Publisher:

ISBN:

Page: 320

View: 650

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining's four guiding principles-- prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM's emerging role in helping to advance educational research--from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Adoption of Data Analytics in Higher Education Learning and Teaching

This volume provides insight into the emerging paradigms, frameworks, methods and processes of managing change to better facilitate organizational transformation toward implementation of educational data mining and learning analytics.

Adoption of Data Analytics in Higher Education Learning and Teaching

Author: Dirk Ifenthaler

Publisher: Springer Nature

ISBN: 3030473929

Page: 434

View: 431

The book aims to advance global knowledge and practice in applying data science to transform higher education learning and teaching to improve personalization, access and effectiveness of education for all. Currently, higher education institutions and involved stakeholders can derive multiple benefits from educational data mining and learning analytics by using different data analytics strategies to produce summative, real-time, and predictive or prescriptive insights and recommendations. Educational data mining refers to the process of extracting useful information out of a large collection of complex educational datasets while learning analytics emphasizes insights and responses to real-time learning processes based on educational information from digital learning environments, administrative systems, and social platforms. This volume provides insight into the emerging paradigms, frameworks, methods and processes of managing change to better facilitate organizational transformation toward implementation of educational data mining and learning analytics. It features current research exploring the (a) theoretical foundation and empirical evidence of the adoption of learning analytics, (b) technological infrastructure and staff capabilities required, as well as (c) case studies that describe current practices and experiences in the use of data analytics in higher education.

Data Mining and Learning Analytics

Data mining is an automatic approach to extract patterns of regularity or
relationship from massive data (Adriaans & Zantinge, 1998). In the past, data
analysis had been conducted only with statistical methods. However, in the
middle of 1990s, ...

Data Mining and Learning Analytics

Author: Samira ElAtia

Publisher: John Wiley & Sons

ISBN: 1118998219

Page: 320

View: 674

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Utilizing Educational Data Mining Techniques for Improved Learning Emerging Research and Opportunities

Including topics such as automatic assessment, educational analytics, and machine learning, this book is essential for IT specialists, data analysts, computer engineers, education professionals, administrators, policymakers, researchers, ...

Utilizing Educational Data Mining Techniques for Improved Learning  Emerging Research and Opportunities

Author: Bhatt, Chintan

Publisher: IGI Global

ISBN: 1799800121

Page: 166

View: 244

Modern education has increased its reach through ICT tools and techniques. To manage educational data with the help of modern artificial intelligence, data and web mining techniques on dedicated cloud or grid platforms for educational institutes can be used. By utilizing data science techniques to manage educational data, the safekeeping, delivery, and use of knowledge can be increased for better quality education. Utilizing Educational Data Mining Techniques for Improved Learning: Emerging Research and Opportunities is a critical scholarly resource that explores data mining and management techniques that promote the improvement and optimization of educational data systems. The book intends to provide new models, platforms, tools, and protocols in data science for educational data analysis and introduces innovative hybrid system models dedicated to data science. Including topics such as automatic assessment, educational analytics, and machine learning, this book is essential for IT specialists, data analysts, computer engineers, education professionals, administrators, policymakers, researchers, academicians, and technology experts.

Data Mining in Learning Analytics

The goal of the Master's thesis was to perform the Data Mining part of a project "Learning Analytics for Secondary Schools" developed in inLab at Technical University of Catolonia.

Data Mining in Learning Analytics

Author: Joanna Sykurska

Publisher:

ISBN:

Page:

View: 211

The goal of the Master's thesis was to perform the Data Mining part of a project "Learning Analytics for Secondary Schools" developed in inLab at Technical University of Catolonia.

Responsible Analytics and Data Mining in Education

This volume unpacks and explores this complex issue through a systematic framework whose dimensions address the issues that must be considered before implementation of a new initiative or program.

Responsible Analytics and Data Mining in Education

Author: Badrul H. Khan

Publisher: Routledge

ISBN: 1351394673

Page: 292

View: 435

Winner of two Outstanding Book Awards from the Association of Educational Communications and Technology (Culture, Learning, & Technology and Systems Thinking & Change divisions)! Rapid advancements in our ability to collect, process, and analyze massive amounts of data along with the widespread use of online and blended learning platforms have enabled educators at all levels to gain new insights into how people learn. Responsible Analytics and Data Mining in Education addresses the thoughtful and purposeful navigation, evaluation, and implementation of these emerging forms of educational data analysis. Chapter authors from around the world explore how data analytics can be used to improve course and program quality; how the data and its interpretations may inadvertently impact students, faculty, and institutions; the quality and reliability of data, as well as the accuracy of data-based decisions; ethical implications surrounding the collection, distribution, and use of student-generated data; and more. This volume unpacks and explores this complex issue through a systematic framework whose dimensions address the issues that must be considered before implementation of a new initiative or program.

Learning Analytics Goes to School

In this book, three leading researchers convey lessons from their own experiences—and the current state of the art in educational data mining and learning analytics more generally—by providing an explicit set of tools and processes for ...

Learning Analytics Goes to School

Author: Andrew Krumm

Publisher: Routledge

ISBN: 1317307860

Page: 178

View: 482

Learning Analytics Goes to School presents a framework for engaging in education research and improving education practice through the use of newly available data sources and analytical approaches. The application of data-intensive research techniques to understanding and improving learning environments has been growing at a rapid pace. In this book, three leading researchers convey lessons from their own experiences—and the current state of the art in educational data mining and learning analytics more generally—by providing an explicit set of tools and processes for engaging in collaborative data-intensive improvement.

Emerging Trends in Learning Analytics

This book documents recent attempts to conduct systematic, prodigious and multidisciplinary research in learning analytics and present their findings and identify areas for further research and development.

Emerging Trends in Learning Analytics

Author:

Publisher: BRILL

ISBN: 9004399275

Page: 304

View: 124

This book documents recent attempts to conduct systematic, prodigious and multidisciplinary research in learning analytics and present their findings and identify areas for further research and development. The book also unveils the distinguished and exemplary works by educators and researchers in the field highlighting the current trends, privacy and ethical issues, creative and unique approaches, innovative methods, frameworks, and theoretical and practical aspects of learning analytics.

Software Data Engineering for Network eLearning Environments

This book presents original research on analytics and context awareness with regard to providing sophisticated learning services for all stakeholders in the eLearning context.

Software Data Engineering for Network eLearning Environments

Author: Santi Caballé

Publisher: Springer

ISBN: 3319683187

Page: 228

View: 219

This book presents original research on analytics and context awareness with regard to providing sophisticated learning services for all stakeholders in the eLearning context. It offers essential information on the definition, modeling, development and deployment of services for these stakeholders. Data analysis has long-since been a cornerstone of eLearning, supplying learners, teachers, researchers, managers and policymakers with valuable information on learning activities and design. With the rapid development of Internet technologies and sophisticated online learning environments, increasing volumes and varieties of data are being generated, and data analysis has moved on to more complex analysis techniques, such as educational data mining and learning analytics. Now powered by cloud technologies, online learning environments are capable of gathering and storing massive amounts of data in various formats, of tracking user-system and user-user interactions, and of delivering rich contextual information.

Handbook of Learning Analytics

"The Handbook of Learning Analytics is designed to meet the needs of a new and growing field. It aims to balance rigor, quality, open access and breadth of appeal and was devised to be an introduction to the current state of research.

Handbook of Learning Analytics

Author: Charles Lang

Publisher:

ISBN: 9780995240810

Page: 355

View: 675

"The Handbook of Learning Analytics is designed to meet the needs of a new and growing field. It aims to balance rigor, quality, open access and breadth of appeal and was devised to be an introduction to the current state of research. The Handbook is a snapshot of the field in 2017 and features a range of prominent authors from the learning analytics and educational data mining research communities. The chapters have been peer reviewed by committed members of these fields and are being published with the endorsement of both the Society for Learning Analytics Research and the International Society for Educational Data Mining. We hope you will find the Handbook of Learning Analytics a useful and informative resource."--Publisher information.

Advancing the Power of Learning Analytics and Big Data in Education

This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational ...

Advancing the Power of Learning Analytics and Big Data in Education

Author: Azevedo, Ana

Publisher: IGI Global

ISBN: 1799871045

Page: 296

View: 978

The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments.

Learning Analytics Fundaments Applications and Trends

This book provides a conceptual and empirical perspective on learning analytics, its goal being to disseminate the core concepts, research, and outcomes of this emergent field.

Learning Analytics  Fundaments  Applications  and Trends

Author: Alejandro Peña-Ayala

Publisher: Springer

ISBN: 3319529773

Page: 303

View: 776

This book provides a conceptual and empirical perspective on learning analytics, its goal being to disseminate the core concepts, research, and outcomes of this emergent field. Divided into nine chapters, it offers reviews oriented on selected topics, recent advances, and innovative applications. It presents the broad learning analytics landscape and in-depth studies on higher education, adaptive assessment, teaching and learning. In addition, it discusses valuable approaches to coping with personalization and huge data, as well as conceptual topics and specialized applications that have shaped the current state of the art. By identifying fundamentals, highlighting applications, and pointing out current trends, the book offers an essential overview of learning analytics to enhance learning achievement in diverse educational settings. As such, it represents a valuable resource for researchers, practitioners, and students interested in updating their knowledge and finding inspirations for their future work.

Social Media Data Mining and Analytics

Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources.

Social Media Data Mining and Analytics

Author: Gabor Szabo

Publisher: John Wiley & Sons

ISBN: 1118824903

Page: 352

View: 456

Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.

Big Data Analytics Methods

This book presents over a 100 algorithms and data refinement techniques in machine learning, predictive modeling, natural language processing.

Big Data Analytics Methods

Author: Peter Ghavami

Publisher: de Gruyter

ISBN: 9781547417957

Page: 254

View: 173

Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.

Data Mining for Business Analytics

This is the sixth version of this successful text, and the first using Python.

Data Mining for Business Analytics

Author: Galit Shmueli

Publisher: John Wiley & Sons

ISBN: 1119549841

Page: 608

View: 674

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R